On the generalized power-type Toader mean
نویسندگان
چکیده
منابع مشابه
Sharp Generalized Seiffert Mean Bounds for Toader Mean
and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then
متن کاملLévy–khintchine Representation of Toader–qi Mean
In the paper, by virtue of a Lévy–Khintchine representation and an alternative integral representation for the weighted geometric mean, the authors establish a Lévy–Khintchine representation and an alternative integral representation for the Toader–Qi mean. Moreover, the authors also collect an probabilistic interpretation and applications in engineering of the Toader– Qi mean. 1. Preliminaries...
متن کاملOptimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are the arithmetic-geometric, Toader and generalized logarithmic means of two posi...
متن کاملBounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
The authors find the greatest value λ and the least value μ, such that the double inequality C(λa + (1-λb), λb+(1-λ)a) < αA(a, b) + (1-α)T(a,b) < C(μa + (1 - μ)b, μb + (1 - μ)a) holds for all α ∈ (0, 1) and a, b > 0 with a ≠ b, where C(a, b) = 2(a² + ab + b²)/3(a + b), A(a, b) = (a + b)/2, and T(a, b) = (a + b)/2, and T(a, b) = (2/π) ∫₀(π/2) √a²cos²θ + b²sin²θdθ denote, respectively, the centro...
متن کاملOptimal convex combination bounds of geometric and Neuman means for Toader-type mean
In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2022
ISSN: ['1846-579X', '1848-9575']
DOI: https://doi.org/10.7153/jmi-2022-16-18